Mathematics – Combinatorics
Scientific paper
2010-05-10
Mathematics
Combinatorics
Scientific paper
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let \Gamma(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs G_{n,p} (above the connectivity threshold) and for random regular graphs G_r, r \geq 3, the graph \Gamma(t) undergoes a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for t \leq (1-\epsilon)t^*, there is a unique giant component, plus components of size O(log n), and for t \geq (1+\epsilon)t^* all components are of size O(log n). For G_{n,p} and G_r we give the value of t^*, and the size of \Gamma(t). For G_r, we also give the degree sequence of \Gamma(t), the size of the giant component (if any) of \Gamma(t) and the number of tree components of \Gamma(t) of a given size k=O(log n). We also show that for random digraphs D_{n,p} above the strong connectivity threshold, there is a similar directed phase transition. Thus for t\leq (1-\epsilon)t^*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t\geq (1+\epsilon)t^* all strongly connected components are of size O(log n).
Cooper Colin
Frieze Alan
No associations
LandOfFree
Component structure of the vacant set induced by a random walk on a random graph does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Component structure of the vacant set induced by a random walk on a random graph, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Component structure of the vacant set induced by a random walk on a random graph will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-628222