Mathematics – Dynamical Systems
Scientific paper
2006-09-25
Mathematics
Dynamical Systems
29 pages
Scientific paper
10.1007/s00220-007-0313-4
We consider dynamical systems for which the spatial extension plays an important role. For these systems, the notions of attractor, epsilon-entropy and topological entropy per unit time and volume have been introduced previously. In this paper we use the notion of Kolmogorov complexity to introduce, for extended dynamical systems, a notion of complexity per unit time and volume which plays the same role as the metric entropy for classical dynamical systems. We introduce this notion as an almost sure limit on orbits of the system. Moreover we prove a kind of variational principle for this complexity.
Bonanno Claudio
Collet Pierre
No associations
LandOfFree
Complexity for extended dynamical systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Complexity for extended dynamical systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Complexity for extended dynamical systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-15623