Mathematics – Geometric Topology
Scientific paper
2005-11-30
International Mathematics Research Notices (2011) 2011 (19): 4295-4375
Mathematics
Geometric Topology
52 pages, 12 pictures, 10 tables, 20 references. Changes: final version
Scientific paper
10.1093/imrn/rnq161
We study complex hyperbolic disc bundles over closed orientable surfaces that arise from discrete and faithful representations H_n->PU(2,1), where H_n is the fundamental group of the orbifold S^2(2,...,2) and thus contains a surface group as a subgroup of index 2 or 4. The results obtained provide the first complex hyperbolic disc bundles M->{\Sigma} that: admit both real and complex hyperbolic structures; satisfy the equality 2(\chi+e)=3\tau; satisfy the inequality \chi/2
Anan'in Sasha
Grossi Carlos H.
Gusevskii Nikolay
No associations
LandOfFree
Complex Hyperbolic Structures on Disc Bundles over Surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Complex Hyperbolic Structures on Disc Bundles over Surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Complex Hyperbolic Structures on Disc Bundles over Surfaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-430122