Mathematics – Algebraic Topology
Scientific paper
2007-08-15
Mathematics
Algebraic Topology
improvements in subsections 7.1 and 7.2; some small comments are added or revised and some typos corrected
Scientific paper
We consider compact homogeneous spaces G/H of positive Euler characteristic endowed with an invariant almost complex structure J and the canonical action \theta of the maximal torus T ^{k} on G/H. We obtain explicit formula for the cobordism class of such manifold through the weights of the action \theta at the identity fixed point eH by an action of the quotient group W_G/W_H of the Weyl groups for G and H. In this way we show that the cobordism class for such manifolds can be computed explicitly without information on their cohomology. We also show that formula for cobordism class provides an explicit way for computing the classical Chern numbers for (G/H, J). As a consequence we obtain that the Chern numbers for (G/H, J) can be computed without information on cohomology for G/H. As an application we provide an explicit formula for cobordism classes and characteristic numbers of the flag manifolds U(n)/T^n, Grassmann manifolds G_{n,k}=U(n)/(U(k)\times U(n-k)) and some particular interesting examples.
Buchstaber Victor M.
Terzic Svjetlana
No associations
LandOfFree
Complex cobordism classes of homogeneous spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Complex cobordism classes of homogeneous spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Complex cobordism classes of homogeneous spaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-380856