Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2009-10-09
Astron.Astrophys.504:595-603,2009
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Scientific paper
10.1051/0004-6361/200912390
The structure and dynamics of small vertical photospheric magnetic flux concentrations has been often treated in the framework of an approximation based upon a low-order truncation of the Taylor expansions of all quantities in the horizontal direction, together with the assumption of instantaneous total pressure balance at the boundary to the non-magnetic external medium. Formally, such an approximation is justified if the diameter of the structure (a flux tube or a flux sheet) is small compared to all other relevant length scales (scale height, radius of curvature, wavelength, etc.). The advent of realistic 3D radiative MHD simulations opens the possibility of checking the consistency of the approximation with the properties of the flux concentrations that form in the course of a simulation. We carry out a comparative analysis between the thin flux tube/sheet models and flux concentrations formed in a 3D radiation-MHD simulation. We compare the distribution of the vertical and horizontal components of the magnetic field in a 3D MHD simulation with the field distribution in the case of the thin flux tube/sheet approximation. We also consider the total (gas plus magnetic) pressure in the MHD simulation box. Flux concentrations with super-equipartition fields are reasonably well reproduced by the second-order thin flux tube/sheet approximation. The differences between approximation and simulation are due to the asymmetry and the dynamics of the simulated structures.
Chaouche Yelles L.
Schuessler Manfred
Solanki Sami K.
No associations
LandOfFree
Comparison of the thin flux tube approximation with 3D MHD simulations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comparison of the thin flux tube approximation with 3D MHD simulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparison of the thin flux tube approximation with 3D MHD simulations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-51875