Computer Science
Scientific paper
May 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008gbioc..22.2012c&link_type=abstract
Global Biogeochemical Cycles, Volume 22, Issue 2, CiteID GB2012
Computer Science
9
Biogeosciences: Carbon Cycling (4806), Biogeosciences: Biosphere/Atmosphere Interactions (0315), Biogeosciences: Modeling, Biogeosciences: Remote Sensing
Scientific paper
Quantification of terrestrial CO2 sources and sinks at regional scales (~102-106 km2) is fundamental to improving our understanding of the terrestrial carbon cycle. Two independent methods to extract the gross primary productivity (GPP) from atmospheric CO2 concentration measurements were explored and compared in this study. The methods are (1) planetary boundary layer (PBL) carbon budget analysis that allows the estimation of regional GPP at daily time steps from hourly CO2 concentration measurements and (2) spatially explicit hourly carbon cycle modeling based on remote sensing and then integrating the daily flux field with a concentration footprint function depending on wind and stability. These methods have been applied to a 28-m tower at an old black spruce site near Candle Lake (~100 km NE of Prince Albert: 53.98717°N, 105.11779°W). The estimates of daily GPP by these two approaches agreed well for 2003 (slope = 0.99; r 2 = 0.89). In order to test these methods of inferring the regional GPP from mixing ratio measurements, we also compared the estimates of regional GPP with estimates made using eddy covariance (EC) flux measurements, although their respective source areas are different. They had similar seasonal patterns, but the regional estimates were consistently smaller than the local EC flux derived GPP throughout the growing season in 2003. These estimates of annual regional GPP were 649-664 g C m-2 for 2003 while the EC-derived annual GPP was 819-847 g C m-2. The annual difference was about 20-25%. The EC flux footprint of the tower was relatively homogeneous old black spruce while the concentration footprint, which was a few orders of magnitude larger than the flux footprint, covered boreal evergreen and deciduous broadleaf forests, grassland, cropland, and lakes. Nonforested land occupied about 10-50% of the concentration footprint depending on wind direction and speed and was less productive than the black spruce forest. The discrepancies between regional and local GPP estimates reflected the differences in underlying land surfaces represented by the different footprint areas.
Black Andrew T.
Chen Baozhang
Chen Jing M.
Mo Gang
Worthy Douglas E. J.
No associations
LandOfFree
Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1539915