Statistics – Computation
Scientific paper
Feb 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgrd..11500i08h&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue D24, CiteID D00I08
Statistics
Computation
9
Atmospheric Processes: Thermospheric Dynamics (0358), Atmospheric Processes: Tides And Planetary Waves, Computational Geophysics: Model Verification And Validation
Scientific paper
Four years (2002-2005) of continuous accelerometer measurements taken onboard the CHAMP satellite (orbit altitude ˜400 km) offer a unique opportunity to investigate the thermospheric zonal wind on a global scale. Recently, we were able to relate the longitudinal wave-4 structure in the zonal wind at equatorial latitudes to the influence of nonmigrating tides and in particular to the eastward propagating diurnal tide with zonal wave number 3 (DE3). The DE3 tide is primarily excited by latent heat release in the tropical troposphere in deep convective clouds. In order to investigate the mechanisms that couple the tidal signals to the upper thermosphere, we undertook a comparison with the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) developed at the National Center for Atmospheric Research (NCAR). We ran the model for a day in March, June, September, and December and applied the same processing steps to the model output as was done for the CHAMP tidal analysis. The main results of the comparison can be summarized as follows: (1) TIME-GCM simulations do not correctly reproduce the observed intra-annual variations of DE3 and the eastward propagating diurnal tide with zonal wave number 2 (DE2). (2) Simulations of DE3 for June are more successful. Both TIME-GCM and CHAMP show an increase in DE3 amplitudes with decreasing solar flux level. (3) The amplitudes of the simulated westward propagating diurnal tide with zonal wave number 2 (DW2) and the standing diurnal tide (D0) increase with increasing solar flux in June. The predicted dependence of DW2 and DO on solar flux is also observed by CHAMP.
Hagan Maura E.
Häusler Kathrin
Lühr Hermann
Maute Astrid
Roble Raymond G.
No associations
LandOfFree
Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1096685