Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-05-04
2011, ApJ, 732, 68C
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
34 pages, 11 figures
Scientific paper
Near-infrared interferometers have recently imaged a number of rapidly rotating A-type stars, finding levels of gravity darkening inconsistent with theoretical expectations. Here, we present new imaging of both a cooler star {\beta} Cas (F2IV) and a hotter one {\alpha} Leo (B7V) using the CHARA array and the MIRC instrument at the H band. Adopting a solid-body rotation model with a simple gravity darkening prescription, we modeled the stellar geometric properties and surface temperature distributions, confirming both stars are rapidly rotating and show gravity darkening anomalies. We estimate the masses and ages of these rapid rotators on L-Rpol and HR diagrams constructed for non-rotating stars by tracking their non-rotating equivalents. The unexpected fast rotation of the evolved subgiant {\beta} Cas offers a unique test of the stellar core-envelope coupling, revealing quite efficient coupling over the past ~ 0.5 Gyr. Lastly we summarize all our interferometric determinations of the gravity darkening coefficient for rapid rotators, finding none match the expectations from the widely used von Zeipel gravity darkening laws. Since the conditions of the von Zeipel law are known to be violated for rapidly rotating stars, we recommend using the empirically-derived {\beta} = 0.19 for such stars with radiation-dominated envelopes. Furthermore, we note that no paradigm exists for self-consistently modeling heavily gravity-darkened stars that show hot radiative poles with cool convective equators.
Brummelaar ten Th.
Che Xiao
McAlister Hal
Mérand Antoine
Monnier John D.
No associations
LandOfFree
Colder and Hotter: Interferometric imaging of β Cassiopeiae and α Leonis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Colder and Hotter: Interferometric imaging of β Cassiopeiae and α Leonis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colder and Hotter: Interferometric imaging of β Cassiopeiae and α Leonis will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-689023