Cold and warm dust along a merging galaxy sequence

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted for publication in MNRAS

Scientific paper

10.1111/j.1365-2966.2004.08289.x

We investigate the cold and warm dust properties during galaxy interactions using a merging galaxy sample ordered into a chronological sequence from pre- to post-mergers. Our sample comprises a total of 29 merging systems selected to have far-infrared and sub-millimeter observations. The sub-millimeter data are mainly culled from the literature while for 5 galaxies (NGC 3597, NGC 3690, NGC 6090, NGC 6670 and NGC 7252) the sub-millimeter observations are presented here for the first time. We use the 100-to-850 micron flux density ratio, f_{100}/f_{850}, as a proxy to the mass fraction of the warm and the cold dust in these systems. We find evidence for an increase in f_{100}/f_{850} along the merging sequence from early to advanced mergers and interpret this trend as an increase of the warm relative to the cold dust mass. We argue that the two key parameters affecting the f_{100}/f_{850} flux ratio is the star-formation rate and the dust content of individual systems relative to the stars. Using a sophisticated model for the absorption and re-emission of the stellar UV radiation by dust we show that these parameters can indeed explain both the increase and the observed scatter in the f_{100}/f_{850} along the merging galaxy sequence. We also discuss our results under the hypothesis that elliptical galaxies are formed via disc galaxy mergers.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cold and warm dust along a merging galaxy sequence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cold and warm dust along a merging galaxy sequence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cold and warm dust along a merging galaxy sequence will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-579459

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.