Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-01-09
Adv.SpaceRes.40:1466-1471,2007
Astronomy and Astrophysics
Astrophysics
12 pages, 4 figures. Minor changes to Author/Comments fields. To appear in Advances in Space Research
Scientific paper
10.1016/j.asr.2007.01.036
The cohesive energy of condensed matter in strong magnetic fields is a fundamental quantity characterizing magnetized neutron star surfaces. The cohesive energy refers to the energy required to pull an atom out of the bulk condensed matter at zero pressure. Theoretical models of pulsar and magnetar magnetospheres depend on the cohesive properties of the surface matter in strong magnetic fields. For example, depending on the cohesive energy of the surface matter, an acceleration zone ("polar gap") above the polar cap of a pulsar may or may not form. Also, condensation of the neutron star surface, if it occurs, can significantly affect thermal emission from isolated neutron stars. We describe our calculations of the cohesive property of matter in strong magnetic fields, and discuss the implications of our results to the recent observations of neutron star surface emission as well as to the detection/non-detection of radio emission from magnetars.
Lai Dong
Medin Zach
No associations
LandOfFree
Cohesive property of magnetized neutron star surfaces: Computations and implications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cohesive property of magnetized neutron star surfaces: Computations and implications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cohesive property of magnetized neutron star surfaces: Computations and implications will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-446886