Mathematics – Commutative Algebra
Scientific paper
2004-11-15
Journal of Algebra 285 (2005), 819-834
Mathematics
Commutative Algebra
Final version
Scientific paper
10.1016/j.jalgebra.2004.11.009
Let k be a perfect field of positive characteristic, k(t)_{per} the perfect
closure of k(t) and A=k[[X_1,...,X_n]]. We show that for any maximal ideal N of
A'=k(t)_{per}\otimes_k A, the elements in \hat{A'_N} which are annihilated by
the "Taylor" Hasse-Schmidt derivations with respect to the X_i form a
coefficient field of \hat{A'_N}.
Fernandez-Lebron M.
Narváez-Macarro Luis
No associations
LandOfFree
Coefficient fields and scalar extension in positive characteristic does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Coefficient fields and scalar extension in positive characteristic, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coefficient fields and scalar extension in positive characteristic will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-39648