Cobordism categories of manifolds with corners

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

43 pages, 6 figures

Scientific paper

In this paper we study the topology of cobordism categories of manifolds with corners. Specifically, if {Cob}_{d,} is the category whose objets are a fixed dimension d, with corners of codimension less than or equal to k, then we identify the homotopy type of the classifying space B{Cob}_{d,} as the zero space of a homotopy colimit of certain diagram of Thom spectra. We also identify the homotopy type of the corresponding cobordism category when extra tangential structure is assumed on the manifolds. These results generalize the results of Galatius, Madsen, Tillmann and Weiss, and the proofs are an adaptation of the their methods. As an application we describe the homotopy type of the category of open and closed strings with a background space X, as well as its higher dimensional analogues. This generalizes work of Baas-Cohen-Ramirez and Hanbury.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cobordism categories of manifolds with corners does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cobordism categories of manifolds with corners, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cobordism categories of manifolds with corners will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-409498

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.