Mathematics – Probability
Scientific paper
2006-09-12
Mathematics
Probability
Scientific paper
The Skorokhod Embedding problem is well understood when the underlying process is a Brownian motion. We examine the problem when the underlying is the simple symmetric random walk and when no external randomisation is allowed. We prove that any measure on Z can be embedded by means of a minimal stopping time. However, in sharp contrast to the Brownian setting, we show that the set of measures which can be embedded in a uniformly integrable way is strictly smaller then the set of centered probability measures: specifically it is a fractal set which we characterise as an iterated function system. Finally, we define the natural extension of several known constructions from the Brownian setting and show that these constructions require us to further restrict the sets of target laws.
Cox Alexander M. G.
Obloj Jan
No associations
LandOfFree
Classes of Skorokhod Embeddings for the Simple Symmetric Random Walk does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Classes of Skorokhod Embeddings for the Simple Symmetric Random Walk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Classes of Skorokhod Embeddings for the Simple Symmetric Random Walk will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-692041