Mathematics – Logic
Scientific paper
May 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011acasn..52..260y&link_type=abstract
Acta Astronomica Sinica, vol. 52, no. 3, p.260-262
Mathematics
Logic
Galaxies: Evolution, Galaxies: Formation, Galaxies: Individual: Milky Way, M31, M33
Scientific paper
Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals.
Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the model fails to match the present SFR in M31 disk by predicting too much SFR in the outer disk. We attribute this disagreement to the fact that M31 has been perturbed recently by a violent encounter. The observed SFR profile of M31 caused by this encounter does not seem to follow any form of the K-S law. On the other hand, the stellar metallicity distribution functions (MDFs) measured along the disk of M31 indicate the integrated star formation during the whole disk history and should not be affected by recent events. Our model reproduces rather well those distributions from 6 kpc to 21 kpc (except the region at 16 kpc). Basically, the disks of MW and M31 are formed "inside-out" with similar infall timescale. If M31 is closer to a typical disk galaxy, it would be the best that the researches on the models of this disk galaxy are carried out within the cosmological framework. Simple models, like the one adopted in this thesis, could be used to describe the quiescent galaxy, like the MW.
Secondly, the similar model is applied to investigate the formation history of M33 disk. We calculate the radial profiles of gas surface density and SFR surface density, gas fraction, abundances, the surface brightness of FUV and K bands, FUV-K color gradient and so on. All those properties are compared with observations if available. Two different infall histories, namely collapse model and accretion model, are adopted respectively. The effects of free parameters (infall timescale, infall delay time and efficiency of outflow) on the model results are discussed in detail. It is found that the disk of M33 can not be formed by fast collapse process. Observations show that M33 is much smaller and less massive than MW, but has larger gas fraction and lower metallicity. This implies that it should be formed by slow accretion process and is consistent with the slow accretion model. We study the abundance gradients of different elements in M33 disk and find that outflow should play an important role in the evolution of abundance gradients. The present abundances will be much higher than the observation if without outflow. When the disk undergoes an outflow with a similar strength to the local SFR, the abundance within the radius of 6 kpc will be reduced dramatically, but no noticeable change occurs in outer regions, resulting in a flatter abundance gradient. This is consistent with the observed features. Our model predicts a slightly flatter FUV-K color gradient when the long infall timescale and proper outflow are adopted. Considering the uncertainty of the extinction correction, the results are acceptable.
No associations
LandOfFree
Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1745070