Mathematics – Combinatorics
Scientific paper
2011-05-12
Discrete Mathematics and Theoretical Computer Science Proc. AK, 2009, 337-348
Mathematics
Combinatorics
Scientific paper
Free cumulants are nice and useful functionals of the shape of a Young diagram, in particular they give the asymptotics of normalized characters of symmetric groups S(n) in the limit n\to\infty. We give an explicit combinatorial formula for normalized characters of the symmetric groups in terms of free cumulants. We also express characters in terms of Frobenius coordinates. Our formulas involve counting certain factorizations of a given permutation. The main tool are Stanley polynomials which give values of characters on multirectangular Young diagrams. R\'esum\'e. Les cumulants libres sont des fonctions agr\'eables et utiles sur l'ensemble des diagrammes de Young, en particulier, ils donnent le comportement asymptotiques des caract\`eres normalis\'es du groupe sym\'etrique S(n) dans la limite n\to\infty. Nous donnons une formule combinatoire explicite pour les caract\`eres normalis\'es du groupe sym\'etrique en fonction des cumulants libres. Nous exprimons \'egalement les caract\`eres en fonction des coordonn\'ees de Frobenius. Nos formules font intervenir le nombre de certaines factorisations d'une permutation donn\'ee. L'outil principal est la famille de polyn\^omes de Stanley donnant les valeurs des caract\`eres sur les diagrammes de Young multirectangulaires.
Dołega Maciej
Féray Valentin
Sniady Piotr
No associations
LandOfFree
Characters of symmetric groups in terms of free cumulants and Frobenius coordinates does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Characters of symmetric groups in terms of free cumulants and Frobenius coordinates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Characters of symmetric groups in terms of free cumulants and Frobenius coordinates will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-497562