Chaotic thermohaline convection in low-porosity hydrothermal systems

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Scientific paper

Fluids circulate through the Earth's crust perhaps down to depths as great as 5-15 km, based on oxygen isotope systematics of exhumed metamorphic terrains, geothermal fields, mesozonal batholithic rocks and analysis of obducted ophiolites. Hydrothermal flows are driven by both thermal and chemical buoyancy; the former in response to the geothermal gradient and the latter due to differences in salinity that appear to be ubiquitous. Topographically driven flows generally become less important with increasing depth. Unlike heat, solute cannot diffuse through solid matrix. As a result, temperature perturbations advect more slowly than salinity fluctuations by the factor φ, but diffuse more rapidly by the factor κ/D and are so smoothed out more efficiently. Here, φ is porosity, while κ and D denote the thermal and chemical molecular diffusivity, respectively. Double-advective instabilities may play a significant role in solute and heat transport in the deep crust where porosities are low. We have studied the stability and dynamics of the flow as a function of φ and thermal and chemical buoyancy, for situations where mechanical dispersion of solute dominates over molecular diffusion in the fluid. In the numerical experiments, a porous medium is heated from below while solute provides a stabilizing influence. For typical geological parameters, the thermohaline flow appears intrinsically chaotic. We attribute the chaotic dynamical behavior of the flow to a dominance of advective and dispersive chemical transfer over the more moderate convective heat transfer, the latter actually driving the flow. Fast upward advective transport and lateral mixing of solute leads to formation of horizontal chemical barriers at depth. These gravitationally stable interfaces divide the domain in several layers of distinct composition and lead to significantly reduced heat flow for thousands of years. The unsteady behavior of thermochemical flow in low-porosity regions has implications for heat transport at mid-ocean ridges, for ore genesis, for metasomatism and metamorphic petrology, and the diagenetic history of sediments in subsiding basins.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Chaotic thermohaline convection in low-porosity hydrothermal systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Chaotic thermohaline convection in low-porosity hydrothermal systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chaotic thermohaline convection in low-porosity hydrothermal systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1725687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.