Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-08-28
Astrophys.J.690:330-346,2009
Astronomy and Astrophysics
Astrophysics
16 pages, 15 figures, uses emulateapj, published as ApJ 690:330-346, 2009 January 1
Scientific paper
10.1088/0004-637X/690/1/330
We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.
Hanke Manfred
Lee Julia C.
Nowak Michael A.
Pottschmidt Katja
Schulz Norbert S.
No associations
LandOfFree
Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system. I. The non-dip spectrum in the low/hard state does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system. I. The non-dip spectrum in the low/hard state, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system. I. The non-dip spectrum in the low/hard state will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-326607