Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 2012
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012aas...21914805o&link_type=abstract
American Astronomical Society, AAS Meeting #219, #148.05
Astronomy and Astrophysics
Astronomy
Scientific paper
Central dark matter distribution in dwarf galaxies
Se-Heon Oh, Chris Brook, Fabio Governato, Elias Brinks, Lucio Mayer, W.J.G. de Blok, Alyson Brooks and Fabian Walter
We present high-resolution mass models of 7 nearby dwarf galaxies from "The HI Nearby Galaxy Survey” (THINGS) and compare these with those from hydrodynamic simulations of dwarf galaxies assuming a ΛCDM cosmology. The simulations include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating and most importantly, physically motivated gas outflows driven by supernovae (SNe). For the THINGS dwarf galaxies, we derive the mass models for the dark matter component by subtracting the contribution from baryons, derived from our HI observations and using the "Spitzer Infrared Nearby Galaxies Survey” (SINGS) 3.6μm data, from the total kinematics, leaving only the contribution by the Dark Matter halo. In parallel, we perform dark matter mass modeling of the simulated dwarf galaxies in exactly the same way as the observed THINGS dwarf galaxies. From a direct comparison between the observations and simulations, we find that the dark matter rotation curves of the simulated dwarf galaxies rise less steeply in the inner regions than those of dark-matter-only simulations based on the ΛCDM paradigm, and are more consistent with those of the THINGS dwarf galaxies. In addition, the mean value of the logarithmic inner dark matter density slopes, α, of the simulated galaxies is approximately -0.4 ± 0.1, which is in good agreement with α = -0.29 ± -0.07 of the THINGS dwarf galaxies. This shows that the baryonic feedback processes in the simulations are efficient in flattening the initial cusps with α = -1.0 to -1.5 predicted from dark-matter-only simulations, and render the dark matter halo mass distribution more similar to that observed in nearby dwarf galaxies.
Brinks Elias
Brook Chris
Brooks Alyson
de Blok Erwin
Governato Fabio
No associations
LandOfFree
Central Dark Matter Distribution In Dwarf Galaxies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Central Dark Matter Distribution In Dwarf Galaxies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Central Dark Matter Distribution In Dwarf Galaxies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1576306