Catégories de foncteurs en grassmanniennes

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

130 pages

Scientific paper

Soit F la cat\'{e}gorie des foncteurs entre espaces vectoriels sur un corps fini. Les cat\'{e}gories de foncteurs en grassmanniennes sont obtenues en rempla\c{c}ant la source de cette cat\'{e}gorie par la cat\'{e}gorie des couples form\'{e}s d'un espace vectoriel et d'un sous-espace. Ces cat\'{e}gories poss\`{e}dent une tr\`{e}s riche structure alg\'{e}brique ; nous \'{e}tudierons notamment leurs objets finis et leurs propri\'{e}t\'{e}s cohomologiques. Nous donnons des applications \`{a} la filtration de Krull de la cat\'{e}gorie F et \`{a} la K-th\'{e}orie stable des corps finis. -- Let F be the category of functors between vector spaces over a finite field. The grassmannian functor categories are obtained by replacing the source of this category by the category of pairs formed by a vector space and a subspace. These categories have a very rich algebraic structure; we study in particular their finite objects and their homological properties. We give applications to the Krull filtration of the category F and to the stable K-theory of finite fields.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Catégories de foncteurs en grassmanniennes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Catégories de foncteurs en grassmanniennes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catégories de foncteurs en grassmanniennes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-12850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.