Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18

Ionosphere: Ionospheric Disturbances, Ionosphere: Ionospheric Dynamics, Ionosphere: Ionosphere/Atmosphere Interactions (0335), Ionosphere: Ion Chemistry And Composition (0335)

Scientific paper

The ionospheric response to the magnetic storm of 15 July 2000 is investigated using the global total electron content (TEC) maps provided by global positioning system and the measurements of ion density, composition, and drift velocity from the Defense Meteorological Satellite Program (DMSP) F13 and F15 spacecraft. The global TEC maps showed clear seasonal effects that can be characterized by a dominance of a negative ionospheric storm (decrease in plasma density) in the summer (northern) hemisphere and the pronounced positive ionospheric storm (increase in plasma density) in the winter (southern) hemisphere. The northern negative storm phase rapidly expanded to the equator at midnight and even penetrated to the opposite hemisphere during the storm main phase. In the southern hemisphere, the negative storm phase began in the morning sector but was confined to narrow latitude and local time sectors owing to strong poleward winds and ion drag on the dayside. The negative storm phases in the opposite hemispheres kept out of phase, lasted for a day, and corotated with Earth. These characteristics show good qualitative similarity with the predictions of global model simulations. The positive storm phase prevailed in the southern low-middle latitudes and was most pronounced during nighttime. In that region, the quiet time DMSP measurements at 1800 LT, 2100 LT, 0600 LT, and 0900 LT showed low ion density, low O+ proportion, and large downward ion drift velocity compared with those in the northern hemisphere. During storm time the O+ proportion and ion concentration increased to the levels seen in the northern hemisphere while the downward ion drift velocity was much decreased. The excellent temporal and spatial correspondence of the increase in ion concentration with the decrease in downward ion drift velocity indicates that the maintenance of the F layer at high altitudes by the storm-induced equatorward neutral winds was the main driver of the positive ionospheric storm. The quiet time hemispheric asymmetry was most significant at nighttime, and therefore the positive storm effect appeared most pronounced at nighttime in the winter hemisphere.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1091038

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.