Computer Science – Information Theory
Scientific paper
2011-09-21
Computer Science
Information Theory
To be presented at Allerton conference 2011
Scientific paper
We propose a general methodology for performing statistical inference within a `rare-events regime' that was recently suggested by Wagner, Viswanath and Kulkarni. Our approach allows one to easily establish consistent estimators for a very large class of canonical estimation problems, in a large alphabet setting. These include the problems studied in the original paper, such as entropy and probability estimation, in addition to many other interesting ones. We particularly illustrate this approach by consistently estimating the size of the alphabet and the range of the probabilities. We start by proposing an abstract methodology based on constructing a probability measure with the desired asymptotic properties. We then demonstrate two concrete constructions by casting the Good-Turing estimator as a pseudo-empirical measure, and by using the theory of mixture model estimation.
Dahleh Munther A.
Ohannessian Mesrob I.
Tan Vincent Y. F.
No associations
LandOfFree
Canonical Estimation in a Rare-Events Regime does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Canonical Estimation in a Rare-Events Regime, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Canonical Estimation in a Rare-Events Regime will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-257821