Mathematics – Statistics Theory
Scientific paper
2007-04-12
Econometric Theory 24 (2008)
Mathematics
Statistics Theory
Scientific paper
We consider the problem of estimating the unconditional distribution of a post-model-selection estimator. The notion of a post-model-selection estimator here refers to the combined procedure resulting from first selecting a model (e.g., by a model selection criterion like AIC or by a hypothesis testing procedure) and then estimating the parameters in the selected model (e.g., by least-squares or maximum likelihood), all based on the same data set. We show that it is impossible to estimate the unconditional distribution with reasonable accuracy even asymptotically. In particular, we show that no estimator for this distribution can be uniformly consistent (not even locally). This follows as a corollary to (local) minimax lower bounds on the performance of estimators for the distribution; performance is here measured by the probability that the estimation error exceeds a given threshold. These lower bounds are shown to approach 1/2 or even 1 in large samples, depending on the situation considered. Similar impossibility results are also obtained for the distribution of linear functions (e.g., predictors) of the post-model-selection estimator.
Leeb Hannes
Poetscher Benedikt M.
No associations
LandOfFree
Can One Estimate The Unconditional Distribution of Post-Model-Selection Estimators? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Can One Estimate The Unconditional Distribution of Post-Model-Selection Estimators?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Can One Estimate The Unconditional Distribution of Post-Model-Selection Estimators? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-148032