Mathematics – Combinatorics
Scientific paper
2004-02-05
Adv. Math. 205 (2006), no. 2, 313-353.
Mathematics
Combinatorics
Revisions in exposition (partly in response to the suggestions of an anonymous referee) including many new figures. Also, Conj
Scientific paper
For an arbitrary finite Coxeter group W we define the family of Cambrian lattices for W as quotients of the weak order on W with respect to certain lattice congruences. We associate to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope combinatorially isomorphic to the generalized associahedron for W. In types A and B we obtain, by means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms of triangulations and in terms of permutations. Using this combinatorial information, we prove in types A and B that the Cambrian fans are combinatorially isomorphic to the normal fans of the generalized associahedra and that one of the Cambrian fans is linearly isomorphic to Fomin and Zelevinsky's construction of the normal fan as a "cluster fan." Our construction does not require a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the Cambrian lattices of type A, and two "Tamari" lattices in type B are identified and characterized in terms of signed pattern avoidance. We also show that open intervals in Cambrian lattices are either contractible or homotopy equivalent to spheres.
No associations
LandOfFree
Cambrian Lattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cambrian Lattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cambrian Lattices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-318828