Mathematics – Algebraic Geometry
Scientific paper
2000-09-08
Mathematics
Algebraic Geometry
Scientific paper
In this paper we propose a systematic study of Thom polynomials for group actions defined by M. Kazarian. On one hand we show that Thom polynomials are first obstructions for the existence of a section and are connected to several problems of topology, global geometry and enumerative algebraic geometry. On the other hand we describe a way to calculate Thom polynomials: the method of restriction equations. It turned out that though the idea is quite simple the method is very powerful. We reproduced and improved earlier result in several directions (singularities, Schubert calculus, quivers). However a proper introduction to the basic theorems was missing. In this paper we try to pay this debt as well as we present the connections with obstruction theory and equivariant cohomology. We give some new results and outline possible generalizations and problems.
Feher Laszlo
Rimányi Richard
No associations
LandOfFree
Calculation of Thom polynomials for group actions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Calculation of Thom polynomials for group actions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Calculation of Thom polynomials for group actions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-203963