Mathematics – Representation Theory
Scientific paper
2009-10-13
Mathematics
Representation Theory
Scientific paper
Let d and m be two natural numbers of distinct parities. Let $\pi$ be an admissible irreducible tempered representation of GL(d,F), where F is a p-adic field. We assume that $\pi$ is self-dual. Then we can extend $\pi$ as a representation $\tilde{\pi}$ of a non-connected group $GL(d,F)\rtimes \{1,\theta\}$. Let $\rho$ be a representation of GL(m,F). We assume that it has similar properties as $\pi$. Jacquet, Piatetski-Shapiro and Shalika have defined the factor $\epsilon(s,\pi\times\rho,\psi)$. We prove that we can compute $\epsilon(1/2,\pi\times\rho,\psi)$ by an integral formula where occur the characters of $\tilde{\pi}$ and $\tilde{\rho}$. It's similar to the formula which, for special orthogonal groups, computes the multiplicities appearing in the local Gross-Prasad conjecture.
No associations
LandOfFree
Calcul d'une valeur d'un facteur epsilon par une formule intégrale does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Calcul d'une valeur d'un facteur epsilon par une formule intégrale, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Calcul d'une valeur d'un facteur epsilon par une formule intégrale will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-640253