Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-07-23
Astronomy and Astrophysics
Astrophysics
Four pages, accepted to be published as a Letter in A&A
Scientific paper
10.1051/0004-6361:20077971
Compact binary supersoft X-ray sources (CBSS) are explained as being associated with hydrostatic nuclear burning on the surface of a white dwarf with high accretion rate. This high mass transfer rate has been suggested to be caused by dynamical instability, expected when the donor star is more massive than the accreting object. When the orbital period is smaller than ~6 hours, this mechanism does not work and the CBSS with such periods are believed to be fed by a distinct mechanism: the wind-driven accretion. Such a mechanism has been proposed to explain the properties of objects like SMC 13, T Pyx and V617 Sgr. One observational property that offers a critical test for discriminating between the above two possibilities is the orbital period change. As systems with wind-driven accretion evolve with increasing periods, some of them may reach quite long orbital periods. The above critical test may, therefore, also be applied to orbital periods longer than 6 hours. CAL 87 is an eclipsing system in the LMC with an orbital period of 10.6 hours that could provide the opportunity for testing the hypothesis of the system being powered by wind-driven accretion. We obtained eclipse timings for this system and show that its orbital period increases with a rate of P/Pdot = +7.2(+/-1.3) X 10^{6} years. Contrary to the common belief, we conclude that CAL 87 is the first confirmed case of a wind-driven CBSS with an orbital period longer than 6 hours. The system is probably an evolved object that had an initial secondary mass of M2i=0.63 solar masses but is currently reduced to about M2=0.34 solar masses. We discuss evidence that other CBSS, like CAL 83 and V Sge stars, like WX Cen, are probably also wind-driven systems. This may in fact be the rule, and systems with inverted mass ratio, the exception.
Oliveira Alexandre S.
Steiner Joao Evangelista
No associations
LandOfFree
CAL 87 - an evolved wind-driven supersoft X-ray binary does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with CAL 87 - an evolved wind-driven supersoft X-ray binary, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CAL 87 - an evolved wind-driven supersoft X-ray binary will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-110177