Brownian motion on disconnected sets, basic hypergeometric functions, and some continued fractions of Ramanujan

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published in at http://dx.doi.org/10.1214/193940307000000383 the IMS Collections (http://www.imstat.org/publications/imscollec

Scientific paper

10.1214/193940307000000383

Motivated by L\'{e}vy's characterization of Brownian motion on the line, we propose an analogue of Brownian motion that has as its state space an arbitrary closed subset of the line that is unbounded above and below: such a process will be a martingale, will have the identity function as its quadratic variation process, and will be ``continuous'' in the sense that its sample paths don't skip over points. We show that there is a unique such process, which turns out to be automatically a reversible Feller-Dynkin Markov process. We find its generator, which is a natural generalization of the operator $f\mapsto{1/2}f''$. We then consider the special case where the state space is the self-similar set $\{\pm q^k:k\in \mathbb{Z}\}\cup\{0\}$ for some $q>1$. Using the scaling properties of the process, we represent the Laplace transforms of various hitting times as certain continued fractions that appear in Ramanujan's ``lost'' notebook and evaluate these continued fractions in terms of basic hypergeometric functions (that is, $q$-analogues of classical hypergeometric functions). The process has 0 as a regular instantaneous point, and hence its sample paths can be decomposed into a Poisson process of excursions from 0 using the associated continuous local time. Using the reversibility of the process with respect to the natural measure on the state space, we find the entrance laws of the corresponding It\^{o} excursion measure and the Laplace exponent of the inverse local time -- both again in terms of basic hypergeometric functions. By combining these ingredients, we obtain explicit formulae for the resolvent of the process. We also compute the moments of the process in closed form. Some of our results involve $q$-analogues of classical distributions such as the Poisson distribution that have appeared elsewhere in the literature.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Brownian motion on disconnected sets, basic hypergeometric functions, and some continued fractions of Ramanujan does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Brownian motion on disconnected sets, basic hypergeometric functions, and some continued fractions of Ramanujan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brownian motion on disconnected sets, basic hypergeometric functions, and some continued fractions of Ramanujan will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-703821

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.