Statistics – Applications
Scientific paper
2010-10-02
Annals of Applied Statistics 2009, Vol. 3, No. 4, 1236-1265
Statistics
Applications
This paper discussed in: [arXiv:0912.3295], [arXiv:1010.0822], [arXiv:1010.0825], [arXiv:1010.0828], [arXiv:1010.0836], [arXiv
Scientific paper
10.1214/09-AOAS312
Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with respect to a stochastic process is introduced, and it is shown that population distance covariance coincides with the covariance with respect to Brownian motion; thus, both can be called Brownian distance covariance. In the bivariate case, Brownian covariance is the natural extension of product-moment covariance, as we obtain Pearson product-moment covariance by replacing the Brownian motion in the definition with identity. The corresponding statistic has an elegantly simple computing formula. Advantages of applying Brownian covariance and correlation vs the classical Pearson covariance and correlation are discussed and illustrated.
Rizzo Maria L.
Székely Gábor J.
No associations
LandOfFree
Brownian distance covariance does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Brownian distance covariance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brownian distance covariance will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-519378