Astronomy and Astrophysics – Astrophysics
Scientific paper
Apr 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002aps..aprk11002d&link_type=abstract
American Physical Society, April Meeting, Jointly Sponsored with the High Energy Astrophysics Division (HEAD) of the American As
Astronomy and Astrophysics
Astrophysics
Scientific paper
SN1006 has proved to be the critical supernova remnant in the study of high-energy, nonthermal processes. It provided the first undisputed source of synchrotron X-rays and has led to the discovery of less dominate nonthermal X-ray emission in other SNRs. The full ASCA dataset (70 ks) provides coverage as yet unmatched by XMM or Chandra. Analysis of the integrated spectrum of SN1006 (Dyer et al. 2001) demonstrated that the spectra was well described by the SRESC synchrotron model with a small thermal component -- with important implications for elemental abundances. Models for SN1006 have been build around the striking cylindrical symmetry about the NW-SE axis. In these models the morphology is explained by limb brightening due to expansion into an upstream magnetic field. Now however, close spectral analysis of regions across the remnant indicate that SN1006 is NOT symmetric as previously thought. I will demonstrate that SRESC submodels place severe limits on nonthermal emission in non-limb regions -- breaking the symmetry and forcing the observer into a unique orientation with respect to the remnant and discuss the impact of this result.
Dyer Kristy
Reynolds Stephen
No associations
LandOfFree
Breaking the symmetry of SN1006 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Breaking the symmetry of SN1006, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breaking the symmetry of SN1006 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1536411