Mathematics – Number Theory
Scientific paper
2007-12-12
Mathematics
Number Theory
53 pages, in English
Scientific paper
An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More generally, such failure of a local-global principle may occur for the representation of one integral quadratic form by another integral quadratic form. We show that many such examples may be accounted for by a Brauer-Manin obstruction for the existence of integral points on schemes defined over the integers. For several types of homogeneous spaces of linear algebraic groups, this obstruction is shown to be the only obstruction to the existence of integral points. ----- Une forme quadratique enti\`ere peut \^etre repr\'esent\'ee par une autre forme quadratique enti\`ere sur tous les anneaux d'entiers p-adiques et sur les r\'eels, sans l'\^etre sur les entiers. On en trouve de nombreux exemples dans la litt\'erature. Nous montrons qu'une partie de ces exemples s'explique au moyen d'une obstruction de type Brauer-Manin pour les points entiers. Pour plusieurs types d'espaces homog\`enes de groupes alg\'ebriques lin\'eaires, cette obstruction est la seule obstruction \`a l'existence d'un point entier.
Colliot-Th'el`ene Jean-Louis
Xu Fei
No associations
LandOfFree
Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-661643