Mathematics – Quantum Algebra
Scientific paper
1999-09-13
"Tressages des groupes de Poisson formels a` dual quasitriangulaire", Journal of Pure and Applied Algebra 161 (2001), 295-307
Mathematics
Quantum Algebra
11 pages, AMS-TeX file; English and French version available. The whole paper (even the title) has been entirely rewritten. So
Scientific paper
Let g be a quasitriangular Lie bialgebra over a field k of characteristic zero, and let g^* be its dual Lie bialgebra. We prove that the formal Poisson group F[[g^*]] is a braided Hopf algebra. More generally, we prove that if (U_h,R) is any quasitriangular QUEA, then (U_h', Ad(R)|_{U_h' \otimes U_h'}) --- where U_h' is defined by Drinfeld --- is a braided QFSHA. The first result is then just a consequence of the existence of a quasitriangular quantization (U_h,R) of U(g) and of the fact that U_h' is a quantization of F[[g^*]]. ----- Soit g une big\`ebre de Lie quasitriangulaire sur un corps k de characteristique zero, et soit g^* sa big\`ebre de Lie duale. Nous prouvons que le groupe de Poisson formel F[[g^*]] est une algebre de Hopf tress\'ee. Plus en g\'en\'eral, nous prouvons que, si (U_h,R) est une QUEA quasitriangulaire, alors (U_h', Ad(R)|_{U_h' \otimes U_h'}) --- o\`u U_h' est definie par Drinfeld --- est une QFSHA tress\'ee. Le premier r\'esultat est alors une consequence de l'existence d'une quantification quasitriangulaire (U_h,R) de U(g) et du fait que U_h' est une quantification de F[[g^*]].
Gavarini Fabio
Halbout Gilles
No associations
LandOfFree
Braidings of Poisson groups with quasitriangular dual (Tressages des groupes de Poisson à dual quasitriangulaire) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Braidings of Poisson groups with quasitriangular dual (Tressages des groupes de Poisson à dual quasitriangulaire), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Braidings of Poisson groups with quasitriangular dual (Tressages des groupes de Poisson à dual quasitriangulaire) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-464823