Mathematics – Category Theory
Scientific paper
2005-11-03
Applied Categorical Structures 14 (2006), no. 2, 151-164
Mathematics
Category Theory
v2 (accepted)
Scientific paper
10.1007/s10485-006-9012-0
A pro-C^*-algebra is a (projective) limit of C^*-algebras in the category of topological *-algebras. From the perspective of non-commutative geometry, pro-C^*-algebras can be seen as non-commutative k-spaces. An element of a pro-C^*-algebra is bounded if there is a uniform bound for the norm of its images under any continuous *-homomorphism into a C^*-algebra. The *-subalgebra consisting of the bounded elements turns out to be a C^*-algebra. In this paper, we investigate pro-C^*-algebras from a categorical point of view. We study the functor (-)_b that assigns to a pro-C^*-algebra the C^*-algebra of its bounded elements, which is the dual of the Stone-\v{C}ech-compactification. We show that (-)_b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand-duality for commutative unital pro-C^*-algebras is also presented.
Harti Rachid El
Lukács Gábor
No associations
LandOfFree
Bounded and unitary elements in pro-C^*-algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bounded and unitary elements in pro-C^*-algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bounded and unitary elements in pro-C^*-algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-483047