Nonlinear Sciences – Adaptation and Self-Organizing Systems
Scientific paper
2002-04-25
Nonlinear Sciences
Adaptation and Self-Organizing Systems
69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Series
Scientific paper
This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.
Aldana Maximino
Coppersmith Susan
Kadanoff Leo
No associations
LandOfFree
Boolean Dynamics with Random Couplings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Boolean Dynamics with Random Couplings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Boolean Dynamics with Random Couplings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-397445