Mathematics – Logic
Scientific paper
Oct 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007cqgra..24q5313.&link_type=abstract
Classical and Quantum Gravity, Volume 24, Issue 20, pp. 5313 (2007).
Mathematics
Logic
Scientific paper
'I know very well that my theory rests on a shaky foundation. What attracts me to it is that it leads to consequences that seem to be accessible to experiment, and it provides a starting point for the theoretical understanding of gravitation', wrote Einstein in 1911. Einstein's Jury by Jeffrey Crelinsten—well documented, well written, and fascinating to read—describes how, from 1909 on, Einstein's two theories of relativity became known to astronomers, and how the predictions made between 1907 and 1915 were received as challenges to observers. The author gives a non-technical account of the efforts made until 1930 to test these predictions; he focuses on two of the three classical tests, namely gravitational redshift and bending of light; the 'jury' consists mainly of American observers—Adams, Campbell, Curtis, Hale, Perrin, St John, Trumpler and others—working with newly built large telescopes, and the Britons Eddington and Evershed.
The major steps which, after a long struggle, convinced the majority of astronomers that Einstein was right, are narrated chronologically in rather great detail, especially the work at Lick Observatory, before and after the famous British observation of 1919, on solar eclipses, and the work at Mount Wilson and the Indian Kodaikanal Observatories to extract the gravitational redshift from the complicated spectrum of the sun. The account of the eclipse work which was carried out between 1918 and 1923 by Lick astronomers corrects the impression suggested by many historical accounts that the British expedition alone settled the light-bending question. Apart from these main topics, the anomalous perihelion advance of Mercury and the ether problem are covered. By concentrating on astronomy rather than on physics this book complements the rich but repetitive literature on Einstein and relativity which appeared in connection with the commemoration of Einstein's annus mirabilis, 2005.
The well told stories include curiosities such as the Vulcan hypothesis, Evershed's Earth effect, and D C Miller's ether drift experiments. In particular, the sections on the history of the Californian observatories, their leading personalities, the differing attitudes of American and European scientists, and the influence of World War 1 on science, add interesting and informative aspects to the narrative. Those sections which report logistic and instrumental details of, for example, eclipse expeditions, were (to me) somewhat tiring.
A weakness seems to be that the scientific importance of relativity problems is not stated clearly. On p43, the reader learns that Curtis quoted de Sitter's theoretical result of 7.15'' per century for Mercury's anomalous perihelion shift, but it is not mentioned that this value was due only to the special-relativistic variation of mass with velocity and already known to be much smaller than the observed value given on p88 and explained by general relativity, which includes, in particular, space curvature. In connection with light bending, the 'factor 2' is mentioned in several places without the explanation that this doubling is due to space curvature, the principal new effect whose observation created such a stir in 1919. Moreover, technical terms, for example absolute space, inertial frame, state of rest and (anomalous) dispersion, are used without explanation. Besides, readers interested as much in science as in its history would probably have appreciated a brief account of the present state of knowledge concerning the issues treated in this book and related ones.
There are a few deplorable errors, for example the spectrum of the Andromeda nebula is shifted not towards the red, but towards the blue (p12); Eddington's limb deflection is given (p144) as 0.61'', while the correct value is 1.61''; misprints like that on p147 (coefficient of dr²), mistaking the astronomer Soldner (not Solden) for a physicist (p164). On p34 one reads 'Minkowski did not really grasp the physical implications of Einstein's work'—a strange judgment which contradicts the historical record.
Thus readers looking for explanations of scientific statements in a historical context may be less satisfied. Those interested in the history and sociology of science, its organizations, the role of leading figures as well as their critics and the difficult process of how scientists establish 'facts', will enjoy reading this book and should profit from it. An 'Einstein's Jury' of today would have more evidence for a positive verdict, but also reasons for new skepticism.
No associations
LandOfFree
BOOK REVIEW: Einstein's Jury: The Race to Test Relativity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with BOOK REVIEW: Einstein's Jury: The Race to Test Relativity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and BOOK REVIEW: Einstein's Jury: The Race to Test Relativity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1064640