Computer Science – Information Theory
Scientific paper
2008-02-14
Computer Science
Information Theory
Scientific paper
It is well know that the theory of minimal blocking sets is studied by several author. Another theory which is also studied by a large number of researchers is the theory of hyperplane arrangements. We can remark that the affine space $AG(n,q)$ is the complement of the line at infinity in $PG(n,q)$. Then $AG(n,q)$ can be regarded as the complement of an hyperplane arrangement in $PG(n,q)$! Therefore the study of blocking sets in the affine space $AG(n,q)$ is simply the study of blocking sets in the complement of a finite arrangement in $PG(n,q)$. In this paper the author generalizes this remark starting to study the problem of existence of blocking sets in the complement of a given hyperplane arrangement in $PG(n,q)$. As an example she solves the problem for the case of braid arrangement. Moreover she poses significant questions on this new and interesting problem.
No associations
LandOfFree
Blocking Sets in the complement of hyperplane arrangements in projective space does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Blocking Sets in the complement of hyperplane arrangements in projective space, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blocking Sets in the complement of hyperplane arrangements in projective space will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-682662