Mathematics – Combinatorics
Scientific paper
2011-09-14
Mathematics
Combinatorics
36 pages
Scientific paper
A bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most 1, and its size is the number of edges which go across the two parts. In this paper, motivated by several questions and conjectures of Bollob\'as and Scott, we study maximum bisections of graphs. First, we extend the classical Edwards bound on maximum cuts to bisections. A simple corollary of our result implies that every graph on $n$ vertices and $m$ edges with no isolated vertices, and maximum degree at most $n/3 + 1$, admits a bisection of size at least $m/2 + n/6$. Then using the tools that we developed to extend Edwards's bound, we prove a judicious bisection result which states that graphs with large minimum degree have a bisection in which both parts span relatively few edges. A special case of this general theorem answers a conjecture of Bollob\'as and Scott, and shows that every graph on $n$ vertices and $m$ edges of minimum degree at least 2 admits a bisection in which the number of edges in each part is at most $(1/3+o(1))m$. We also present several other results on bisections of graphs.
Lee Choongbum
Loh Po-Shen
Sudakov Benny
No associations
LandOfFree
Bisections of graphs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bisections of graphs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bisections of graphs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-570501