Computer Science – Sound
Scientific paper
May 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010eguga..1210056k&link_type=abstract
EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, p.10056
Computer Science
Sound
Scientific paper
Introduction: The waveform capture (WFC) [1] is one of the subsystems of the Lunar Radar Sounder (LRS) [2] on board the KAGUYA spacecraft. By taking advantage of a moon orbiter, the WFC measures plasma waves and radio emis-sions around the moon. The WFC measures two components of electric wave signals detected by the two orthogonal 30 m tip-to-tip antennas from 100Hz to 1MHz. The WFC consists of the WFC-L which meas-ures electric waveform from 100Hz to 100kHz, and the WFC-H which is a fast sweep frequency analyz-er covering from 1kHz up to 1MHz. The WFC-L has two operation modes: DIFF and MONO. In DIFF mode, signals from two pairs of 30m tip-to-tip dipole antennas are obtained. MONO mode is namely an interferometry mode and we separately measure the signals from a pair of monopole antennas. This mode is dedicated to measure the phase velocities and wave numbers of plasma waves. Bipolar-pulses with their time scales of a few ms upto several tens ms were often observed by the WFC-L. Some of them are classified into elec-trostatic solitary waves (ESW) [3], while another type of bipolar pulses which are supposed to be caused by lunar dust impacts are also observed. In the present paper, we introduce the latter type of bipolar-pulses. Observation: In general, ESWs are caused by electron-holes in the nonlinear evolution of electron beam instability. Therefore waveform of ESW is basically symmetric and its propagation direction is parallel to the am-bient magnetic field. On the other hand, another type of bipolar pulses are characterized by their asymmetric waveforms, that is, the latter half of pulse is longer than the first half. It is also noted that detection probability of such asymmetric bipolar pulses in MONO mode is much higher than that in DIFF mode. This is because bipolar pulses detected by a pair of monopole antennas in MONO mode are almost identical (pulses are simultaneously detected with both monopole anten-nas and the polarities of these pulses are also same) and thus most of bipolar-pulses which can be detected in MONO mode are cancelled in DIFF mode. This fact suggests that these bipolar pulses are not a kind of natural wave but these are caused by instantaneous potential changes of the KAGUYA spacecraft. Discussion: Similar type of bipolar-pulses has been observed by the monopole antenna measurements using Radio and Plasma Wave Science (RPWS) instruments on-board Cassini around Saturn [4]. They demonstrated that these bipolar pulses are caused by impacts of dusts floating around the Saturn. It is well-known that lunar dusts are widely dis-tributed in higher altitude range around the moon and it is plausible that these bipolar pulses are caused by the lunar dust impacts. In the presentation, we show the detailed charac-teristics of bipolar pulses detected by the WFC-L onboard KAGUYA. References: [1] Y. Kasahara et al., Earth, Planets and Space, 60(4), 341-351, 2008. [2] T. Ono et al., Earth, Planets and Space, 60(4), 321-332, 2008. [3] K. Hashimoto et al., The 4th SELENE (KAGUYA) Science Working Team Meeting, (this issue), 2010. [4] W.S. Kurth et al, Planetary and Space Science, 54(9-10), 988-998, 2006.
Goto Yoshitaka
Hashimoto Kozo
Horie Hiroki
Kasahara Yoshiya
Kumamoto Atsushi
No associations
LandOfFree
Bipolar-pulses observed by the LRS/WFC-L onboard KAGUYA - Plausible evidence of lunar dust impact - does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bipolar-pulses observed by the LRS/WFC-L onboard KAGUYA - Plausible evidence of lunar dust impact -, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bipolar-pulses observed by the LRS/WFC-L onboard KAGUYA - Plausible evidence of lunar dust impact - will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-918159