Other
Scientific paper
Sep 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011gecoa..75.5229b&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 75, Issue 18, p. 5229-5246.
Other
Scientific paper
99 Technetium ( 99 Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life ( t 1/2 = 2.13 × 10 5 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe 2+ ) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both without and with AQDS). The extent and initial rate of bioreduction were positively correlated with the percent smectite in the S-I series (i.e., layer expandability). Fe(II) in the bioreduced clay minerals subsequently was used to reduce Tc(VII) to Tc(IV) in PIPES buffer. Similar to the trend of bioreduction, in the S-I series, reduced NAu-2 showed the highest reactivity toward Tc(VII), and reduced illite exhibited the least. The initial rate of Tc(VII) reduction, after normalization to clay and Fe(II) concentrations, was positively correlated with the percent smectite in the S-I series. Fe(II) in chlorite and palygorskite was also reactive toward Tc(VII) reduction. These data demonstrate that crystal chemical parameters (layer expandability, Fe and Fe(II) contents, and surface area, etc.) play important roles in controlling the extent and rate of bioreduction and the reactivity toward Tc(VII) reduction. Reduced Tc(IV) resides within clay mineral matrix, and this association could minimize any potential of reoxidation over long term.
Bishop Michael E.
Dong Hailiang
Edelmann Richard E.
Kukkadapu Ravi K.
Liu Chongxuan
No associations
LandOfFree
Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1400822