Mathematics – Analysis of PDEs
Scientific paper
2003-08-22
Mathematics
Analysis of PDEs
34 pages, 2 figures
Scientific paper
10.1007/s00222-004-0388-x
We study the cubic non linear Schr\"odinger equation (NLS) on compact surfaces. On the sphere $\mathbb{S}^2$ and more generally on Zoll surfaces, we prove that, for $s>1/4$, NLS is uniformly well-posed in $H^s$, which is sharp on the sphere. The main ingredient in our proof is a sharp bilinear estimate for Laplace spectral projectors on compact surfaces. On \'etudie l'\'equation de Schr\"odinger non lin\'eaire (NLS) sur une surface compacte.Sur la sph\`ere $\mathbb{S}^2$ et plus g\'en\'eralement sur toute surface de Zoll, on d\'emontre que pour $s>1/4$, NLS est uniform\'ement bien pos\'ee dans $H^s$, ce qui est optimalsur la sph\`ere. Le principal ingr\'edient de notre d\'emonstration est une estimation bilin\'eaire pour les projecteurs spectraux du laplacien sur une surface compacte.
Burq Nicolas
Gérard Patrick
Tzvetkov Nikolay
No associations
LandOfFree
Bilinear Eigenfunction Estimates and the Nonlinear Schroedinger Equation on Surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bilinear Eigenfunction Estimates and the Nonlinear Schroedinger Equation on Surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bilinear Eigenfunction Estimates and the Nonlinear Schroedinger Equation on Surfaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-385463