Astronomy and Astrophysics – Astrophysics
Scientific paper
Jul 1978
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1978a%26a....67..185t&link_type=abstract
Astronomy and Astrophysics, vol. 67, no. 2, July 1978, p. 185-197. Research supported by the Deutsche Forschungsgemeinschaft.
Astronomy and Astrophysics
Astrophysics
34
Beta Particles, Electron Density (Concentration), Forbidden Transitions, Nuclear Fusion, Supernovae, Energy Dissipation, Formalism, Galactic Nuclei, Neutrinos, Nonrelativistic Mechanics, Particle Interactions, Plasma Decay
Scientific paper
The gross theory of beta decay is used to calculate beta-transition rates for stellar conditions of high temperature and density. The formalism employed is outlined, with attention given to stellar and laboratory beta-transition rates, beta strength functions, single-particle spectra, model configurations, and spin-parity selection rules. The calculated beta-transition rates for A = 56 isobars are presented and compared with the results of other authors. Transition rates and neutrino energy losses in various elementary processes are computed numerically and with the aid of approximate formulas; the processes include p + e(-) yields n + an electron neutrino, n + e(+) yields p + an electron antineutrino, and n decays into p + e(-) + an electron antineutrino. As applications of the elementary processes, the neutron/proton ratio for exploding hot dense matter is calculated, and variations in the total neutron/proton ratio during the expansion and cooling of matter from peak conditions of temperature and density in the early phase of a model supernova explosion are examined. Approximate formulas for the Fermi integrals in the nonrelativistic regime are also provided.
El Eid Mounib F.
Hillebrandt Wolfgang
Takahashi Keitaro
No associations
LandOfFree
Beta transition rates in hot and dense matter does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Beta transition rates in hot and dense matter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Beta transition rates in hot and dense matter will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1698444