Backreaction in Cosmological Models

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages LaTeX, 2 figures, a4wide.sty included

Scientific paper

Most cosmological models studied today are based on the assumption of homogeneity and isotropy. Observationally one can find evidence that supports these assumptions on very large scales, the strongest being the almost isotropy of the Cosmic Microwave Background radiation after assigning the whole dipole to our proper motion relative to this background. However, on small and on intermediate scales up to several hundreds of Mpcs, there are strong deviations from homogeneity and isotropy. Here the problem arises how to relate the observations with the homogeneous and isotropic models. The usual proposal for solving this problem is to assume that Friedmann-Lemaitre models describe the mean observables. Such mean values may be identified with spatial averages. For Newtonian fluid dynamics the averaging procedure has been discussed in detail in Buchert and Ehlers (1997), leading to an additional backreaction term in the Friedmann equation. We use the Eulerian linear approximation and the `Zel'dovich approximation' to estimate the effect of the backreaction term on the expansion. Our results indicate that even for domains matching the background density in the mean, the evolution of the scale factor strongly deviates from the Friedmann solution, critically depending on the velocity field inside.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Backreaction in Cosmological Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Backreaction in Cosmological Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Backreaction in Cosmological Models will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-130690

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.