Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-02-21
Astronomy and Astrophysics
Astrophysics
Latex, 4 pages, 3 figures, macros included. To appear in refereed proceedings of "Hotwiring the Transient Universe 2007", eds.
Scientific paper
10.1002/asna.200710943
There is an increasing number of large, digital, synoptic sky surveys, in which repeated observations are obtained over large areas of the sky in multiple epochs. Likewise, there is a growth in the number of (often automated or robotic) follow-up facilities with varied capabilities in terms of instruments, depth, cadence, wavelengths, etc., most of which are geared toward some specific astrophysical phenomenon. As the number of detected transient events grows, an automated, probabilistic classification of the detected variables and transients becomes increasingly important, so that an optimal use can be made of follow-up facilities, without unnecessary duplication of effort. We describe a methodology now under development for a prototype event classification system; it involves Bayesian and Machine Learning classifiers, automated incorporation of feedback from follow-up observations, and discriminated or directed follow-up requests. This type of methodology may be essential for the massive synoptic sky surveys in the future.
Djorgovski Stanislav G.
Donalek Ciro
Drake Andrew J.
Glikman Eilat
Graham M. G.
No associations
LandOfFree
Automated Probabilistic Classification of Transients and Variables does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Automated Probabilistic Classification of Transients and Variables, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated Probabilistic Classification of Transients and Variables will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-302636