Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7740e..91z&link_type=abstract
Software and Cyberinfrastructure for Astronomy. Edited by Radziwill, Nicole M.; Bridger, Alan. Proceedings of the SPIE, Volume 7
Astronomy and Astrophysics
Astronomy
1
Scientific paper
Facing very large and frequently high dimensional data in astronomy, effectiveness and efficiency of algorithms are always the hot issue. Excellent algorithms must avoid the curse of dimensionality and simultaneously should be computationally efficient. Adopting survey data from optical bands (SDSS, USNO-B1.0) and radio band (FIRST), we investigate feature weighting and feature selection by means of random forest algorithm. Then we employ a kd-tree based k-nearest neighbor method (KD-KNN) to discriminate quasars from stars. Then the performance of this approach based on all features, weighted features and selected features are compared. The experimental result shows that the accuracy improves when using weighted features or selected features. KD-KNN is a quite easy and efficient approach to nonparametric classification. Obviously KD-KNN combined with random forests is more effective to separate quasars from stars with multi-wavelength data.
Zhang Yanxia
Zhao Yongheng
Zheng Hongwen
No associations
LandOfFree
Automated classification of pointed sources does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Automated classification of pointed sources, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated classification of pointed sources will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1387728