Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-09-11
Astrophys.J.699:564-584,2009
Astronomy and Astrophysics
Astrophysics
20 pages (emulate-apj format), 21 figures, final version now published in ApJ. Includes expanded discussion of radiative-trans
Scientific paper
10.1088/0004-637X/699/1/564
We present global, three-dimensional numerical simulations of HD 189733b and HD 209458b that couple the atmospheric dynamics to a realistic representation of non-gray cloud-free radiative transfer. The model, which we call the Substellar and Planetary Atmospheric Radiation and Circulation (SPARC) model, adopts the MITgcm for the dynamics and uses the radiative model of McKay, Marley, Fortney, and collaborators for the radiation. Like earlier work with simplified forcing, our simulations develop a broad eastward equatorial jet, mean westward flow at higher latitudes, and substantial flow over the poles at low pressure. For HD 189733b, our simulations without TiO and VO opacity can explain the broad features of the observed 8 and 24-micron light curves, including the modest day-night flux variation and the fact that the planet/star flux ratio peaks before the secondary eclipse. Our simulations also provide reasonable matches to the Spitzer secondary-eclipse depths at 4.5, 5.8, 8, 16, and 24 microns and the groundbased upper limit at 2.2 microns. However, we substantially underpredict the 3.6-micron secondary-eclipse depth, suggesting that our simulations are too cold in the 0.1-1 bar region. Predicted temporal variability in secondary-eclipse depths is ~1% at Spitzer bandpasses, consistent with recent observational upper limits at 8 microns. We also show that nonsynchronous rotation can significantly alter the jet structure. For HD 209458b, we include TiO and VO opacity; these simulations develop a hot (>2000 K) dayside stratosphere. Despite this stratosphere, we do not reproduce current Spitzer photometry of this planet. Light curves in Spitzer bandpasses show modest phase variation and satisfy the observational upper limit on day-night phase variation at 8 microns. (abridged)
Charbonneau David
Fortney Jonathan J.
Freedman Richard Stuart
Knutson Heather A.
Lian Yuan
No associations
LandOfFree
Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-368222