Mathematics – Classical Analysis and ODEs
Scientific paper
2010-09-08
Mathematics
Classical Analysis and ODEs
Published in the Journal of Approximation Theory
Scientific paper
10.1016/j.jat.2010.01.002
In the first five sections, we deal with the class of probability measures with asymptotically periodic Verblunsky coefficients of p-type bounded variation. The goal is to investigate the perturbation of the Verblunsky coefficients when we add a pure point to a gap of the essential spectrum. For the asymptotically constant case, we give an asymptotic formula for the orthonormal polynomials in the gap, prove that the perturbation term converges and show the limit explicitly. Furthermore, we prove that the perturbation is of bounded variation. Then we generalize the method to the asymptotically periodic case and prove similar results. In the last two sections, we show that the bounded variation condition can be removed if a certain symmetry condition is satisfied. Finally, we consider the special case when the Verblunsky coefficients are real with the rate of convergence being c_n . We prove that the rate of convergence of the perturbation is in fact O(c_n). In particular, the special case c_n = 1/n will serve as a counterexample to the possibility that the convergence of the perturbed Verblunsky coefficients should be exponentially fast when a point is added to a gap.
No associations
LandOfFree
Asymptotics of orthogonal polynomials and point perturbation on the unit circle does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asymptotics of orthogonal polynomials and point perturbation on the unit circle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymptotics of orthogonal polynomials and point perturbation on the unit circle will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-557918