Mathematics – Combinatorics
Scientific paper
2004-11-30
Discrete Math., 306 (7):624-665, 2006
Mathematics
Combinatorics
version 2: change of title; the section on Gaussian fluctuations was moved to a subsequent paper [Piotr Sniady: "Gaussian fluc
Scientific paper
10.1016/j.disc.2006.02.004
The convolution of indicators of two conjugacy classes on the symmetric group S_q is usually a complicated linear combination of indicators of many conjugacy classes. Similarly, a product of the moments of the Jucys--Murphy element involves many conjugacy classes with complicated coefficients. In this article we consider a combinatorial setup which allows us to manipulate such products easily: to each conjugacy class we associate a two-dimensional surface and the asymptotic properties of the conjugacy class depend only on the genus of the resulting surface. This construction closely resembles the genus expansion from the random matrix theory. As the main application we study irreducible representations of symmetric groups S_q for large q. We find the asymptotic behavior of characters when the corresponding Young diagram rescaled by a factor q^{-1/2} converge to a prescribed shape. The character formula (known as the Kerov polynomial) can be viewed as a power series, the terms of which correspond to two-dimensional surfaces with prescribed genus and we compute explicitly the first two terms, thus we prove a conjecture of Biane.
No associations
LandOfFree
Asymptotics of characters of symmetric groups, genus expansion and free probability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asymptotics of characters of symmetric groups, genus expansion and free probability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymptotics of characters of symmetric groups, genus expansion and free probability will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-14146