Biology – Quantitative Biology – Quantitative Methods
Scientific paper
2009-08-27
Biology
Quantitative Biology
Quantitative Methods
accepted: Journal of Bioinformatics and Computational Biology (2009) 22 pages
Scientific paper
It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is $1.104366 n^{-3/2} 2.618034^n$. In this paper, we study combinatorial asymptotics for two special subclasses of RNA secondary structures - canonical and saturated structures. Canonical secondary structures were introduced by Bompf\"unewerer et al., who noted that the run time of Vienna RNA Package is substantially reduced when restricting computations to canonical structures. Here we provide an explanation for the speed-up. Saturated secondary structures have the property that no base pairs can be added without violating the definition of secondary structure (i.e. introducing a pseudoknot or base triple). Here we compute the asymptotic number of saturated structures, we show that the asymptotic expected number of base pairs is $0.337361 n$, and the asymptotic number of saturated stem-loop structures is $0.323954 1.69562^n$, in contrast to the number $2^{n-2}$ of (arbitrary) stem-loop structures as classically computed by Stein and Waterman. Finally, we show that the density of states for [all resp. canonical resp. saturated] secondary structures is asymptotically Gaussian. We introduce a stochastic greedy method to sample random saturated structures, called quasi-random saturated structures, and show that the expected number of base pairs of is $0.340633 n$.
Clote Peter
Kranakis Evangelos
Krizanc Danny
Salvy Bruno
No associations
LandOfFree
Asymptotics of Canonical and Saturated RNA Secondary Structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asymptotics of Canonical and Saturated RNA Secondary Structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymptotics of Canonical and Saturated RNA Secondary Structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-411640