Statistics – Methodology
Scientific paper
2011-02-02
Statistics
Methodology
26 pages
Scientific paper
A parameter estimation problem is considered, in which dispersed sensors transmit to the statistician partial information regarding their observations. The sensors observe the paths of continuous semimartingales, whose drifts are linear with respect to a common parameter. A novel estimating scheme is suggested, according to which each sensor transmits only one-bit messages at stopping times of its local filtration. The proposed estimator is shown to be consistent and, for a large class of processes, asymptotically optimal, in the sense that its asymptotic distribution is the same as the exact distribution of the optimal estimator that has full access to the sensor observations. These properties are established under an asymptotically low rate of communication between the sensors and the statistician. Thus, despite being asymptotically efficient, the proposed estimator requires minimal transmission activity, which is a desirable property in many applications. Finally, the case of discrete sampling at the sensors is studied, when their underlying processes are independent Brownian motions.
No associations
LandOfFree
Asymptotically optimal parameter estimation under communication constraints does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asymptotically optimal parameter estimation under communication constraints, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymptotically optimal parameter estimation under communication constraints will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-80765