Mathematics – Statistics Theory
Scientific paper
2009-09-02
Annals of Statistics 2009, Vol. 37, No. 6A, 3204-3235
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/08-AOS681 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Scientific paper
10.1214/08-AOS681
Asymptotic equivalence theory developed in the literature so far are only for bounded loss functions. This limits the potential applications of the theory because many commonly used loss functions in statistical inference are unbounded. In this paper we develop asymptotic equivalence results for robust nonparametric regression with unbounded loss functions. The results imply that all the Gaussian nonparametric regression procedures can be robustified in a unified way. A key step in our equivalence argument is to bin the data and then take the median of each bin. The asymptotic equivalence results have significant practical implications. To illustrate the general principles of the equivalence argument we consider two important nonparametric inference problems: robust estimation of the regression function and the estimation of a quadratic functional. In both cases easily implementable procedures are constructed and are shown to enjoy simultaneously a high degree of robustness and adaptivity. Other problems such as construction of confidence sets and nonparametric hypothesis testing can be handled in a similar fashion.
Cai Tony T.
Zhou Harrison H.
No associations
LandOfFree
Asymptotic equivalence and adaptive estimation for robust nonparametric regression does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asymptotic equivalence and adaptive estimation for robust nonparametric regression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asymptotic equivalence and adaptive estimation for robust nonparametric regression will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-12087