Computer Science
Scientific paper
Aug 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ep%26s...61.1003o&link_type=abstract
Earth, Planets and Space, Volume 61, p. 1003-1011.
Computer Science
1
Scientific paper
Extremely large amounts of heavy noble gases are concentrated in phase Q, which seems to be a carbonaceous phase analogous to terrestrial Type III kerogen. Phase Q must have very high noble gas retentivity based on the presence of such extremely large amounts of heavy noble gases in a very minor fraction of the meteorite. To verify that kerogen is a carrier phase of Q-noble gases, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) using synchrotron radiation were carried on for kerogens (coals) and carbon allotropes that had been bombarded by 3-keV Ar ions, and the Ar retentivities of the two materials were compared. This comparison of the estimated Ar concentrations in the target materials revealed that carbon allotropes (graphite, fullerene, carbon nanotube, and diamond) have a much higher Ar retentivity than kerogens. This unexpected result clearly shows that the terrestrial kerogens tested in our study are not suitable as a carrier phase of Ar and, consequently, that phase Q may not be similar to the terrestrial kerogen tested. If heavy noble gases are really concentrated in carbonaceous components of primitive meteorites, phase Q may have a more ordered structure than terrestrial kerogen based on the fact that the greatest difference between terrestrial kerogen and carbon allotropes is the degree of order of the molecular structure.
Baba Yoshihiro
Hirao Naohisa
Osawa Takahito
Takeda Naoto
No associations
LandOfFree
Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-832360